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ABSTRACT: Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal 

scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid 

integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) reviews 

the different use cases for these technologies, their current status, and the need for future developments. 

Power system operations require a real-time view of PV production for managing power reserves and for feeding short-

term forecasts. They also require forecasts on all timescales from the short (for dispatching purposes), where statistical 

models work best, to the very long (for infrastructure planning), where physics-based models are more accurate. Power 

system regulations are driving the development of these techniques. This application also provides a good basis for a 

cost/benefit analysis since the forecasting error can be linked to the prices charged for energy imbalance. 
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 INTRODUCTION 

In its review of the challenges and opportunities associated 

with massive deployment of solar PV generation [1], the 

Grid integration working group of the European PV 

Technology Platform (now ETIP PV) identified 

forecasting and observability as critical technologies for 

the planning and operations of the power system with large 

PV penetration. In this paper we set out to spell out in more 

details what features are needed from these technologies 

and, after an assessment of their current status, how they 

need to be developed. 

Some very good reviews of forecasting techniques have 

been published in recent years [2,3]. We have built on 

these by taking a step back and analysing the different use 

cases for forecasting in relation to PV. 

To estimate the economic value of further improvements 

in forecasting, we linked the effect of forecast errors with 

the current imbalance settlement prices charged by 

balancing authorities in Europe. 

 

 

 RATIONALE FOR PV POWER FORECASTING 

 

2.1 Dynamics of power system 

At any times in any power system, consumption (including 

charging of storage systems, and losses) and production 

(including discharging of storage systems) need to be 

equal. In a conventional power system operating in 

alternating current (AC) the frequency is a real-time 

indicator of that balance. However grid assets have a finite 

dynamics so to ensure the balance any fluctuation of 

production or consumption needs to be anticipated as 

much as possible before it translates into frequency 

deviations. 

Indeed, the characteristic time constants of power system 

components range from less than a second to ten years or 

more, as summarized on Table 1: 

Table 1: Characteristic time constant of power system 

components 

< 10 s Inertia response 

Protection system operations 

Switching of power electronics 

Battery switching between charge and 

discharge 

1 min Fast start of pumped hydropower plant [4] 

Fast start of some combustion engines [5] 

15 min Gas power plant from 1/3 to full power [6] 

1 h Start-up and shutdown of most power 

plants 

24 h Commitment of generation units 

1 year Maintenance planning 

10 years Expanding transmission infrastructure 

20+ 

years 

Economic lifetime of PV systems 

Economic lifetime of grid assets 

 

Prior to the introduction of variable renewable sources 

(wind and PV), power consumption was the only 

stochastically variable component in the power system 

balance. Forecasting its variations was already introduced 

in the 1940s. It has since been refined to take into account 

“seasonal” variations (day of the year, day of the week, 

hour of the day) and the specific characteristics of different 

electricity uses (heating and cooling, cooking, industrial 

equipment, lighting, etc.) [7]. The focus has always been 

on regional or national aggregates. 

The deployment of variable renewable generation is 

introducing new requirements on forecasting techniques. 

First of all PV and wind generators are much more 

sensitive to weather conditions. The main weather 

parameter with an influence on electricity demand – where 

heating or cooling is powered with electricity – is 

temperature. This parameter varies slowly in time and 

space. PV and wind on the other hand strongly depend on 

32nd European Photovoltaic Solar Energy Conference and Exhibition

1444



rapidly changing variables: in first approximation, PV 

power is in first approximation proportional to 𝐺 ⋅
(1 + 𝑘 ⋅ log 𝐺) [8] where G is the global irradiance in the 

plane of array, and wind power varies as 𝑉3 where V is the 

wind speed. As a result, the geographic distribution of the 

generators matter more for the aggregate variations than 

that of the loads.  

In addition, PV generation is highly distributed in terms of 

locations and ownership. It is therefore often necessary to 

forecast generation with a higher spatial resolution than 

demand. Indeed single MW-scale plants may be exposed 

to market trades, and microgrid operations with self-

consumed PV electricity require forecasts at the buildings 

or district levels. Such granularity increases the 

forecasting difficulty: the standard deviation of PV power 

production is reduced as 1/√𝑆 and 1/√𝑁, where S is the 

surface area of a PV power plant and N is the number of 

aggregated plants [9,10]. 

 

2.2 Drivers for PV forecasting 

An important concept when dealing with forecasting in the 

power system is the balance group. Balance groups can 

include generation units, consumption units, or be 

“virtual” when operated by financial actors who only 

trade. Forming a balance group is a requirement to 

participate in wholesale electricity markets. All balance 

group reports to a balancing authority, which in Europe is 

generally the transmission system operator (TSO). This 

authority ensures that trades on the electricity market are 

balanced i.e., that contracted generation matches forecast 

consumption. Balancing group managers are responsible 

to ensure that at each time step of market operations their 

contracted production and/or consumption matches the 

realised values. In case of mismatch between prediction 

and realisation, balance group managers are penalised 

based on intraday market price; if the imbalance is in the 

same direction as the whole system (e.g., a producer 

under-delivering when there is a shortage in production), 

the penalty will be above the intraday market price and if 

the imbalance is in the opposite direction the penalty will 

be below. 

PV generators were until recently shielded from this 

balancing responsibility. In Germany for example, 

transmission system operators carry the responsibility and 

operate a balance group for PV systems which are 

connected under the Renewable Energy Sources Act 

(EEG) in their area [11]. Regulators are now pushing to 

increase exposure of PV generators to market conditions 

and increase their responsibility in the balancing 

mechanisms. A 2014 ruling by the Italian regulator 

introduced imbalance charges for renewable power 

generators of more than 1 MW in capacity; the mechanism 

is similar to that applied to conventional balance groups 

but the fees are modulated to take into account the inherent 

volatility of the different sources [12]. The resulting cost 

for PV generators is estimated around 5 €/MWh, which is 

still significantly lower than imbalance prices applied to 

regular balance groups in Europe [13,14]. 

In addition, support mechanisms for large PV generators 

are evolving from feed-in tariffs to market premiums in 

France, Germany and the UK [15] under which these 

generators receive a regulated payment on top of market 

prices. As illustrated on Figure 1, these premiums can be 

fixed, or floating i.e., cover the difference between the 

average market price over a certain period of time – 

generally one month – and a reference price set by the 

regulators. In both cases generators have a direct interest 

in maximising the value on the market of the electricity 

they produce and the volumes they can effectively sell. 

Since a generator can only commit on the market power it 

is confident it can produce, accurate forecasts are essential 

to maximising these sold volumes.

Finally, the development of micro-grids and of combined 

PV+storage systems require local energy management 

which, for optimal operations, relies on predictive control. 

Single-system or neighbourhood-level power forecasts on 

timescales from a few minutes to 24 h are therefore 

necessary. 

These drivers and the dynamics of power system 

components described earlier together create a range of 

use cases for forecasts on time horizon ranging from 

15 min or less to decades, and on geographical scales 

ranging from the single site to an entire region or country. 

These use cases are summarised on Table 2. 

            
Figure 1: Working principle of market premiums; adapted from [15] 

Floating premium

Market price Premium

Reference price

Fixed premium

Market price Premium

Reference price
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 FORECASTING APPROACHES AND 

PERFORMANCE 

 

3.1 Performance criteria 

Because the use cases are so diverse, there is not a single 

metric which could characterise an absolutely “good” 

forecast. Instead, any of the three most commonly used 

metrics, which are listed in Table 3, can be preferred 

depending on the target application. These metrics are 

generally reported in a normalised way; particular 

attention must be paid to the normalisation factor and to 

the integration period. It is in particular good practice to 

integrate the error only over day hours, since PV 

production is sure to be zero in the night. And while errors 

in irradiance forecasts are generally normalised by the 

average measured irradiance, those on power forecasts are 

often normalised by the nominal peak power of the system. 

This difference mechanically results in errors for power 

generation which are about three times lower than for 

irradiance. 

Table 3: Main performance metrics used to assess 

forecasting methods 

Metric Formula Application 

Mean bias 

error 
𝑀𝐵𝐸

=
1

𝑁
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑌𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑)

𝑁

𝑖=1

 

Investment 

decision 

Mean 

absolute 

error 

𝑀𝐴𝐸

=
1

𝑁
∑|𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑌𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑|

𝑁

𝑖=1

 

Balance group 

management 

Root-

mean-

square 

error 

𝑅𝑀𝑆𝐸

=
1

𝑁
√∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑌𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑)

2
𝑁

𝑖=1

 

Optimisation 

of generation 

reserves 

 

3.2 Current forecasting techniques 

The first approach in PV power forecasting relies first on 

the prediction of relevant weather parameters (at least 

temperature and irradiance), followed by a calculation of 

the corresponding power output. This approach can build 

on existing weather forecasting tools. The most 

appropriate tool to predict irradiance depends on the 

desired time horizon. 

For resource assessment i.e. to predict patterns of energy 

generation over the lifetime of the system, statistically 

representative time series of weather parameters are 

generated based on interpolation of ground-level 

measurements (weather stations) or satellite images to 

produce “typical meteorological years” 

For time horizons between six hours and three days, 

numerical weather prediction (NWP) is preferred. NWP 

data are generated by global or mesoscale simulation 

models which provide the numerical integration of the 

coupled differential equations describing the dynamics of 

the atmosphere and radiation transport mechanisms [16]. 

The initial conditions are given by satellite, radar, 

radiosonde and ground station measurements. NWP data 

are often corrected by post-processing algorithms called 

Model Output Statistics (MOS) which use historical 

ground measurements to partially remove systematic 

errors [17]. 

For time horizons between two hours and six hours, 

visible and/or infrared images are acquired by satellite-

based sensors. A cloud index is computed based on 

reflectance measurements and is typically used to derive 

ground-level global and direct irradiances [18]. As 

compared to NWP, only a few relatively simple modelling 

assumptions have to be applied to derive the solar 

resource. Persistence of cloud speed and direction (as 

derived from the two last images) is generally assumed. 

The dynamic nature of clouds challenges cloud-motion 

vector approaches as cloud distribution can change 

substantially within the 30 min horizon which is the 

typical rate of image refresh. It is indeed challenging to 

account for cloud convection, formation, dissipation, and 

deformation. However, since large-scale cloud systems 

(such as those associated with a cold front) are more 

persistent, satellite-based forecasts typically perform more 

accurately than NWP-based forecasting models up to 6 h 

ahead, mostly because of ingestion, data assimilation, and 

latency of calculations required to “spin up” NWP-based 

forecasts. As classical satellite methods use only the 

visible channels (i.e., they work only in daytime), morning 

forecasts are less accurate than daytime ones because of a 

lack of time history; to overcome this issue, images from 

infrared channels (which work day and night) have to be 

taken into consideration [19]. 

For time horizons below 30 minutes, total sky imaging is 

the preferred method. It consists in four steps: 

Table 2: Summary of use cases for PV power forecasting 

Time 

horizon 

Single site  

(10 m – 100 m) 

PV plant owners 

PV plant operators 

MV distribution grid  

(1 km – 10 km) 

DSOs 

Microgrid operators 

Transmission system  

(100 km – 1000 km) 

TSOs 

Market operators 

15 min Management of storage 

system 

Management of active/reactive 

power 

Activation of reserves 

1 h Management of storage 

system 

Intra-day trades 

Storage and load management Intra-day trades 

24 h Management of storage 

system 

Compliance with 

regulations 

Day-ahead trades 

Storage and load planning Booking of reserves  

Transmission scheduling 

Day-ahead trades 

1 year O&M contract Planning of maintenance 

operations 

Long-term trades 

20+ years Investment case Infrastructure planning Infrastructure planning 
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1. Acquisition of the sky image from a 

ground-based, wide-angle camera 

2. Analysis of the sky image to identify 

clouds 

3. Estimation of cloud motion vectors 

4. Prediction of future cloud cover and ground 

irradiance. 

The maximum accuracy with this method is generally 

obtained between 5 min and 20 min; with low and fast-

moving clouds it can be reduced to 3 min and for high and 

slow-moving clouds it can be extended to 30 min. 

The state-of-the-art accuracy for these methods is 

summarised on Figure 2. 

 
Figure 2: Error obtained with state-of-the-art physical 

forecasting methods for irradiance. 

 

The uncertainty on PV power modelling from irradiance 

and weather data comes then on top. In a review of major 

modelling tools, the hourly RMSE on AC power output 

was found to be below 7% in all situations [20]. 

To avoid this addition of errors and to deal with time 

horizons between 30 min and 2 h where there is no 

satisfactory physical forecasting technique for irradiance, 

stochastic learning techniques are used. These methods 

can be separated between: 

- Univariate methods i.e., methods where only 

time series of the target variable (here, PV 

power) are fed into the model. These include: 

o Persistence: 𝑃(𝑡 + 1) = 𝑃(𝑡) 
o STL: seasonal decomposition of time 

series by Loess 

o Holt-Winters seasonal method 

o TSLM: linear model fit with time 

series components 

o ARIMA: autoregressive integrated 

moving average 

o BATS: exponential smoothing state-

space model with Box-Cox 

transformation, ARMA errors, Trend 

and Seasonal components 

o Nnetar: Feed-forward neural networks 

with a single hidden layer and lagged 

inputs for forecasting univariate time 

series 

- Multivariate methods i.e., methods where 

exogenous variables such as measurements of 

ground irradiance, temperature or humidity 

levels are fed into the model in addition to the 

target variable. These include: 

o MLR: Multi-Linear Regression 

Model 

o SVM: Support Vector Machine 

o ANN: Artificial Neural Network 

o Regression Tree 

 

3.3 Value of forecasting 

To estimate the value of forecasting, and of improvement 

in forecasting techniques, the best analogy is the 

operations of balance groups, since for them forecasting 

errors have a well-defined cost. Indeed, European TSOs 

currently charge a typical imbalance price of 20 €/MWh. 

If a 1 MWp plant in the North of Italy were a balance group 

on its own it would then be charged this price. The mean 

absolute error over four years for such a plant is 11.6% of 

nominal power with clear-sky persistence, and 7.1% with 

an advanced forecasting technique (numerical weather 

forecast plus support vector machine) [21]. Since only 

daytime is taken into account (12average), these errors 

translate into an annual imbalance of 0.50 MWh/kWp and 

0.31 MWh/kWp, respectively. So the annual imbalance 

cost would be 10’000 € and 6’200 €, respectively. As a 

comparison, with power-purchase agreements at 

80 €/MWh as are now contracted in Germany, annual 

income for this plant would be 80’000 €. So two 

conclusions can be drawn: 

 Forecasting errors can reduce the value of PV 

electricity by more than 12% 

 Advanced forecasting techniques can generate a 

value of almost 4’000 € per year for a 1 MWp 

plant. 

 

 

 CONCLUSION 

Accurate forecasting of PV power production has many 

use cases in both current power system operations and 

foreseen evolutions towards a more PV-centric system. 

Many of these cases require day-ahead forecasting, which 

is also the time horizon among those considered for which 

forecast errors are the largest. Research and development 

efforts should therefore focus on this horizon. 

Other promising developments for using forecasts in 

power system operations include the communication of 

confidence intervals in addition to forecast values [22], 

and regional clustering to improve the accuracy of 

estimates of current power production and of forecasts. 

Both physical and stochastic learning techniques are 

available to forecast PV power. Their choice mainly 

depends on the target time horizon and on the availability 

of sensors. 

In a simple case, the lost value of PV electricity due to 

forecast errors can be estimated at more than 12% of 

annual revenues. Using advanced forecasting techniques 

can significantly reduce this loss and generate a value of 

almost 4’000 € per year for a 1 MWp plant based on power 

system balancing only. In smaller, weaker power systems 

than those considered here this value would be even 

higher. 
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